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Abstract
Magnetocrystalline anisotropy (MA) energy of (001) face-centred-cubicCo(N)
films is calculated for film thicknesses N = 1–28 in a realistic tight-binding
model with and without sp–d orbital hybridization included. The obtained
results show that the average MA energy is not largely influenced by the
sp–d hybridization. On the other hand, the oscillation pattern is remarkably
changed when the sp–d hybridization is included: in this case the MA energy
has oscillations with a clear period of 2 atomic layers (AL), similar to the
previous ab initio calculations (Szunyogh L, Újfalussy B, Blaas C, Pustugova U,
Sommers C and Weinberger P 1997 Phys. Rev. B 56 14036). A careful analysis
in k- and N-spaces reveals that the total MA oscillations are a superposition
of two oscillatory contributions: one coming from the neighbourhood of the
�-point with period close to 2 AL (regardless whether the sp–d hybridization
is present or not) and the other originating in the region around the M-point.
The M-point contribution has a larger period and its amplitude is significantly
smaller than that of the �-point contribution when the sp–d hybridization is
included so that the 2 AL �-point contribution is dominant in this case. The
two oscillatory MA contributions are attributed to quantum-well states and
the corresponding oscillation periods are related to the extremal radii of the
minority-spin bulk Co Fermi surface.

1. Introduction

One of the crucial properties of thin magnetic films is the dependence of energy on the
magnetization direction, known as magnetic anisotropy. This dependence arises due to two
1 Permanent address.
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different factors. The first one is classical magnetostatic, dipole–dipole, interaction leading
to shape anisotropy. The other one is quantum-relativistic spin–orbit (SO) coupling through
which the energy of an electron depends on the direction of its spin with respect to the film’s
geometric structure. The later effect is referred to as magnetocrystalline anisotropy (MA).
While the energy of shape anisotropy grows linearly with the film thickness the MA energy of
films with cubic lattices has been found to be nearly thickness-independent in most experiments
(e.g. [1–3]) apart for the possible occurrence of a peak in the MA dependence in the very early
stage of film growth [2]. However, only a few experimental papers [4–6] report some MA
oscillations. On the other hand, the pronounced oscillations of the MA energy are usually
found in theoretical calculations [7–19]. The disagreement between theory and experiment
can be attributed to surface roughness and/or interdiffusion present in experimental layered
systems. This conjecture still waits to be verified and a theoretical study is under way [20].

The oscillations of MA energy in (001) face-centred-cubic (fcc) Co(N) unsupported
slabs and Pd(p)/Co(N)/Pd(p) systems have been found theoretically with a parametrical tight-
binding (TB) model by Cinal et al [9–13]. Similar MA oscillations in Co/Cu films versus
thicknesses of Co and Cu layers have also been obtained within an ab initio approach by
Szunyogh et al [16]. The latter authors analysed the MA oscillations by using the discrete
Fourier transformation and thus determined the corresponding oscillation periods with good
accuracy. They attributed MA oscillations to Ruderman–Kittel–Kasuya–Yosida (RKKY)-like
interactions. On the other hand, it has been proved in [12, 13] that the oscillations of the
MA energy versus the Pd overlayer thickness in Co/Pd systems are due to quantum-well
(QW) states which exist in the Pd overlayer and cross the Fermi level in the centre of the
surface Brillouin zone (BZ). The aim of the present paper is to establish the origin of the MA
oscillations in a (001) fcc Co(N) film and, in particular, to examine whether QW states play
a similar role in this purely ferromagnetic, system. To this end, the MA energy of (001) fcc
Co(N) films is broken down in k-space and later analysed as a function of thickness N . In
effect, the individual quantum states responsible for the MA oscillations are identified and the
corresponding oscillation periods are explained. This method is similar to the one applied
previously for the Co/Pd system [13] but it has had to be significantly modified for use in the
present study of MA oscillations versus the thickness of the ferromagnetic Co film.

The ab initio calculations done for (001) fcc systems including the Co(N) layer by
Szunyogh et al [16] yielded MA oscillations versus the Co layer thickness N with a clear
period of 2 atomic layers (AL). On the other hand, the TB, presumably less accurate, model
of [9, 11] led to a more complex oscillation pattern. This situation poses a question of why
this discrepancy takes place and whether it is possible to obtain the correct, ab initio-like,
MA oscillations within a TB approach. The present paper shows that it is just neglecting
orbitals other than d, as assumed in the previously applied TB model [9, 11], that leads to the
incorrect MA thickness dependence for Co films. The calculations reported here are done in
two TB models: one includes all nine s, p, d orbitals; the other uses only five d orbitals, but
its parameters are derived from the first, nine-orbital, model. The MA results of the two TB
models are compared at different stages in order to understand why neglecting s and p orbitals
affects the MA oscillations. This problem is especially interesting in view of the usually
accepted assumption that magnetic properties of transition metals are attributed to d orbitals.

2. Theory

The investigated system is a (001) fcc Co film which consists of N AL. All layer magnetic
moments Ml (per atom) are assumed to be collinear and pointing in a direction characterized
by the polar angle θ made with the slab surface normal (the z axis) and by the azimuthal angle
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φ around the normal. φ is measured from the (110) axis which is chosen to be the x axis; the y
axis is along the (110) direction. Thus, the x and y directions are along the axes of the square
lattice formed by atoms on the (001) fcc surface. The square lattice constant is a2d = a/

√
2,

where a denotes the bulk Co fcc lattice constant.
The film electronic structure is described with the extended TB Hamiltonian

H = H (θ, φ) = H0 + HSO(θ, φ) (1)

which, apart from the standard TB Hamiltonian

H0 =
∑

l j

∑
µ

∑
σ

V σ
l jµc†

l jµσ cl jµσ +
∑

l j

∑
l′ j ′

′ ∑
µν

∑
σ

T σ
l jµ,l′ j ′νc†

l jµσ cl′ j ′νσ , (2)

includes also the SO interaction

HSO(θ, φ) = ξ
∑

jl

∑
µν

∑
σσ ′

〈µσ |L · S|νσ ′〉c†
jlµσ c jlνσ ′ (3)

through which it depends on the magnetization direction (θ, φ). Here ξ = 0.085 eV is the
SO coupling constant for cobalt [9, 11] and c†, c are creation and annihilation operators,
respectively. The analytical (θ, φ) dependence of the SO matrix elements 〈µσ |L · S|νσ ′〉
for spins σ, σ ′ =↑,↓ and all d orbitals µ, ν is given in [21]; similar expressions are used for
p orbitals. The Hamiltonian H0 contains the potentials V σ

l jµ = V σ
lµ for orbitals µ on every

atomic site j in each layer l and the matrices T σ
l jµ,l′ j ′ν describing electron hopping between

neighbouring atoms (the sum over l ′ j ′ in equation (2) includes the first and second nearest
neighbours of each atom l j ) with the aid of the Slater–Koster formalism [22]. The on-site
potentials V σ

lµ in ferromagnetic Co layers depend on spin σ so that non-zero layer-dependent
exchange splittings

�(l)
ex = V ↓

lµ − V ↑
lµ (4)

are present and they are assumed to be equal for all d orbitals µ in a given layer l.
Two different parametrizations of H0 are used in the calculations in order to study the

effect of sp–d hybridization. The first one, the spd TB model, takes into account all nine s, p
and d orbitals while only five d orbitals are used in the other, the d-only TB model. The spd
parametrization starts with the TB parameters obtained from the band fit for paramagnetic fcc
bulk Co [23]. The paramagnetic two-centre hopping parameters are kept unchanged when used
for ferromagnetic bulk and layered Co systems. The on-site potentials V σ

lµ are found as follows.
First, the on-site potentials for d orbitals in ferromagnetic bulk Co are obtained from the
paramagnetic on-site potentials of [23] by introducing bulk exchange splitting �bulk

ex = 1.8 eV
as found in [24]; the bulk s and p on-site potentials retain their corresponding paramagnetic
values. Thus, the total occupations nbulk

s , nbulk
p and nbulk

d of s, p and d orbitals, respectively,
are determined for bulk ferromagnetic Co. Also, the bulk Co spin magnetic moment is found
to be Mbulk = 1.57 µB which is close to values obtained in the ab initio calculations [25, 26].
In a Co film, the layer-projected occupation n(l)

d of all d orbitals is required to be the same in
each AL l and equal to the Co bulk d occupation:

n(l)
d = nbulk

d . (5)

Simultaneously, we assume no charge transfer between layers. This, together with equation (5),
implies that the sum of layer-projected s and p occupations, n(l)

s , n(l)
p , respectively, is also

constant throughout the film:

n(l)
s + n(l)

p = nbulk
s + nbulk

p . (6)
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These requirements, well satisfied at transition-metal surfaces [26]2, are accompanied by the
usual relation

�(l)
ex = �bulk

ex
Ml

Mbulk
(7)

giving the local exchange splitting in each Co layer. Then, the on-site potentials V σ
lµ for s, p

and d orbitals are found by shifting the corresponding bulk values so that the conditions (5)
and (7) are fulfilled. The respective potential shifts are layer-dependent. However, in a given
layer l, all s and p orbitals are shifted by the same amount; similarly, all d orbitals in layer l
have a common shift for given spin. The layer magnetic moments Ml entering equation (7) are
obtained self-consistently at the same time. In particular, the moments M1 = MN = 1.80 µB

at the (001) fcc Co surface, as found for Co(N) films thicker than 7 AL, are enhanced by
0.23 µB in comparison with the bulk Co moment; similar enhancement was reported in the
ab initio calculations [24, 26]. The applied method of determining the spd TB parameters
from the conditions (5) and (7) is similar to the approach presented in [27]. It was also used
previously in the MA calculations for stepped surfaces in [28].

The second, d-only, TB model, including only d orbitals, is built by adopting the d-orbital
hopping parameters and exchange splittings from the full spd model while the on-site potentials
are adjusted in such a way that the layer magnetic moments Ml found earlier in the spd model
are reproduced exactly. This method is similar to the approach applied previously in the TB
models [9–13] based on the canonical TB parameters for d orbitals and the magnetic moments
known from ab initio calculations.

Apart from the potential shifts discussed above, it is assumed in both presently applied TB
models that the on-site potentials V σ

lµ in the very surface layers (l = 1 and N) include a crystal-
field splitting �cr between the d orbitals having lobes pointing out of the plane (i.e. µ = yz,
zx , 3z2 − r2) and those with lobes lying in the film plane (i.e. µ = xy, x2 − y2). The value
�cr = 0.22 eV (cf3), close to 5% of the d-band width, is assumed for the Co surface following
the previous work [9–13] and the results of the ab initio calculations of [29]. Also, recent
careful fits [30] to ab initio bands of Co monolayers prove the presence of similar crystal-field
splittings and imply, for our Co surface, the magnitude of �cr close to the assumed value.

The existence of translation symmetry in the film plane implies that the solutions of the
Hamiltonian (1) are one-electron Bloch states |rk〉 labelled with quantum number r and two-
dimensional, surface wavevector k. These states are spin mixed due to the presence of the
SO interaction HSO(θ, φ) and their energies εrk depend on the magnetization direction (θ, φ).
The total thermodynamic potential of the film is equal to

	 = 	(θ, φ) = −kBT
∑
rk

ln

[
1 + exp

εF − εrk(θ, φ)

kBT

]
(8)

where εF is the Fermi energy, T is the temperature and kB is the Boltzmann constant. The MA
energy EMA (per surface atom) is then defined in the usual way via the force theorem [14, 31]
as the difference

EMA = 1

NBZ

[
	

(
θ = 0, φ = π

4

)
− 	

(
θ = π

2
, φ = π

4

)]
(9)

of the potential 	(θ, φ)/NBZ for two different magnetization directions: one perpendicular to
the film and another direction lying in the film plane; here NBZ denotes the number of k-points
2 The relation (6) is satisfied also for l = 1 when the sp electrons spilled into the vacuum above the Co surface are
included into the occupations n(1)

s , n(1)
p in the very surface layer; cf [26]. This assumption is consistent with the TB

approach which, normally, does not introduce extra layers of empty spheres in the vacuum region.
3 For N = 1, the value of �cr is doubled to �cr = 0.44 eV since all lobes of out-of-plane d orbitals point to the
vacuum present on the sides of the Co monolayer.
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in the BZ. The choice of the in-plane direction along the (010) axis (φ = π
4 in equation (9))

is practically irrelevant since the variation of 	(θ = π
2 , φ) with the angle φ is of the fourth

order in the SO coupling constant ξ while EMA is of the order of ξ2. For the same reason,
equation (9) should give a value of EMA very close to the anisotropy constant K1 obtained
within the perturbation theory:

EMA = K1 + O(ξ4). (10)

This alternative approach, used in the previous work [9–13], treats the SO interaction HSO

as a perturbation and derives K1 for (001) fcc films from the second-order correction to the
thermodynamic potential:

	(2) = 1

2

∑
k

∑
nσ

∑
(n′σ ′) �=(nσ )

f [ε0
n′σ ′(k)] − f [ε0

nσ (k)]

ε0
n′σ ′(k) − ε0

nσ (k)
|〈n′kσ ′|HSO|nkσ 〉|2

= NBZ(K0 + K1 cos2 θ). (11)

Here, f (ε) = 1/{1 + exp[(ε − εF)/kBT ]} is the Fermi–Dirac occupation factor, |nkσ 〉 and
|n′kσ ′〉 denote the eigenstates of the unperturbed Hamiltonian H0, equation (2), while ε0

nσ (k)

and ε0
n′σ ′(k) are their corresponding energies; index n (n′) numbers bands for each spin σ (σ ′)

at every k-point. The explicit expression for the anisotropy constant K1 in terms of these states
and energies is given in [9, 11].

Finite temperature T is used in the present MA calculations because it is convenient from
the numerical point of view. For T > 0, the sums present in equations (8) and (11) can be
done directly and require the use of a relatively small number of k-points; on the other hand,
integration over BZ poses problems at T = 0 in which case special summation techniques, like
the triangle method [9] or the state-tracking technique [32], have been developed to achieve
convergence of the MA energy. The use of finite T was shown previously [11] not to influence
the average value of EMA = EMA(N) though the amplitude of MA oscillations is reduced at
finite temperature.

3. Results and analysis

3.1. Magnetocrystalline anisotropy with and without sp–d hybridization

The MA energy of (001) fcc Co(N) films has been calculated using the two TB models presented
in the previous section. As seen in figure 1, the average value of EMA = EMA(N) does not
change significantly upon inclusion of s and p orbitals; it is also close to the average value of the
MA energy obtained previously within the canonical TB model using only d orbitals [9, 11].

On the other hand, the MA energy calculated in the d-only TB model has oscillations
versus the film thickness N remarkably different than EMA(N) found in the full, spd, TB
model. In the latter model, for N � 8 AL, the MA energy EMA(N) oscillates with period
close to 2 AL. Similar oscillations with the same 2 AL period, though with the phase shifted
by 1 AL4), were also found previously in ab initio calculations done by Szunyogh et al [16]
for multilayer systems including a Co(N) layer. The MA oscillations reported in [16] were
obtained for zero temperature which explains why they continue to be present even for very
thick films (for N � 40 in [16]). On the other hand, the oscillations of EMA(N) shown in
figure 1 are calculated for the finite T = 300 K and therefore they decay much more quickly
(cf [11]; see also the discussion below).

4 Note that the sign of the presently reported MA energies should be changed to the opposite before comparing with
the results shown in figure 1 of [16] since the different sign convention for the MA energy is used there.
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Figure 1. MA energy EMA (cf equation (9)) versus Co film thickness N calculated for (001) fcc
Co(N ) slabs in the spd (line 1) and d-only (line 2) TB models; T = 300 K. The values of EMA
for N = 1 and 2 in the spd TB model are not visible and they are equal to 1.86 and −0.42 meV,
respectively; the value for N = 1 in the d-only model is 1.13 meV. Line 3 shows the difference
EMA − K1 found in the spd TB model; K1 is the MA constant determined within the perturbation
theory approach from equation (11).

Figure 1 also presents the difference between EMA found with the force theorem,
equation (9), and the anisotropy constant K1 calculated directly within the perturbation theory
via equation (11). As argued earlier in equation (10), EMA and K1 differ very little: |EMA−K1|
is not greater than 0.03 meV.

3.2. Analysis of MA oscillations in k- and N-spaces

To understand why sp–d hybridization influences the MA oscillations, one has to answer the
basic question of where these oscillations come from. The solution of this problem will be
obtained by analysing MA energy in several stages. First, let us note that the MA energy
defined by equations (8) and (9) is a sum over the BZ:

EMA = 1

NBZ

∑
k

eMA(k). (12)

For the sake of simplicity, the MA contributions eMA(k) are symmetrized beforehand so that
eMA(k) have the full symmetry of the surface BZ. This can be achieved by taking eMA(k) as half
the sum of the MA contributions stemming directly from equations (8) and (9) at k = (kx, ky)

and k = (−kx, ky). Similar BZ symmetrization of MA contributions can be done when EMA

is determined via the equations (10) and (11) within the perturbation theory (cf [11]).
The MA contributions eMA(k) come from the whole BZ and the magnitude of eMA(k) =

eMA(k, N) at a given k-point grows with increasing Co film thickness N . Such behaviour,
obtained in both TB models applied in this work, was also found earlier for (001) fcc Co slabs
within the canonical d-only TB model (see figure 7 in [11]). At present, the dependence of
eMA(k, N) on N is studied more closely at three high-symmetry k-points: �, M, X in figure 2.
It is clearly seen that for each of these k-points the contribution eMA(k, N) has roughly a linear
dependence on the film thickness N . However, significant oscillations are present on top of
the linear function at the �- and M-points. By generalizing this observation, it is assumed that
the relation

eMA(k, N) = econ
MA(k) + elin

MA(k)N + eosc
MA(k, N) (13)

holds at any k-point. This assumption can be proved rigorously [33] with the use of the
Möbius transformation method developed by Umerski [34]. In the present work, the constant
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Figure 2. MA contribution eMA(k) versus Co film thickness N calculated in the spd TB model at
k = �, M, X for (001) fcc Co(N ) slabs; T = 300 K. The inset shows the positions of the �-, M-,
X-points in the two-dimensional BZ.

term econ
MA(k) and the coefficient elin

MA(k) of the linear term in equation (13) are found in an
approximate manner from values of eMA(k, N) for 8 � N � 28 by using the least squares
method. Then, the oscillatory term eosc

MA(k, N) is determined for each N from equation (13).
This procedure is repeated at every k-point.

The obtained term econ
MA(k) and the coefficient elin

MA(k) are non-zero in the whole BZ.
However, when the coefficient elin

MA(k) is integrated over all the BZ the resultant sum has been
found numerically to vanish almost exactly:

1

NBZ

∑
k

elin
MA(k) = 0 + O(10−4 meV). (14)

The relation (14) results from the fact that, since eMA(k)/N → elin
MA(k) for large N , the

quantity elin
MA(k) is essentially equal to the k-resolved MA contribution from an atom in bulk

Co metal. Thus, the sum
∑

k elin
MA(k) is the total MA energy (per atom) in bulk Co. However,

the MA of a bulk cubic crystal does not contain a second-order term in the SO coupling ξ ,
i.e. a second-rank anisotropy similar to that found for slabs with reduced symmetry. Indeed,
the MA energy of bulk fcc Co starts only with a fourth-rank anisotropy, proportional to ξ4, so
that it is very small when compared to the MA energies of thin films. As a consequence, the
total MA energy of (001) Co film can be very well approximated as

EMA(N) = 1

NBZ

∑
k

econ
MA(k) +

1

NBZ

∑
k

eosc
MA(k, N) = Econ

MA + Eosc
MA(N) (15)

which explains qualitatively the dependence of EMA on N seen in figure 1 and also found in
the previous MA calculations [7, 9–16, 18, 19]. The average values of the film MA energy is
Econ

MA = 0.20 meV in the spd TB model and Econ
MA = 0.32 meV in the d-only TB model.

The oscillatory MA contribution eosc
MA(k, N) is found to have significantly larger values

only in the vicinity of the �- and M-points; cf figure 3 for N = 11. To visualize this conclusion
better, eosc

MA(k, N) is plotted, in figures 4 and 5, along the diagonal �–M of the BZ for several
film thicknesses N . As seen in these figures, eosc

MA(k, N) oscillates with a period close to 2 AL
for small k = |k| in both the TB models applied. For k close to the M-point (or any of the
three other corners of the BZ), eosc

MA(k, N) has a larger oscillation period: around 5 AL in the
spd TB model and around 3.5 AL in the d-only one. The oscillations of eosc

MA(k, N) at the very
�- and M-points are clearly visible in figure 2.

To quantify how the neighbourhoods of the �- and M-points contribute to the oscillations
of the total MA energy EMA(N), the oscillatory contribution eosc

MA(k, N) is integrated over two
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Figure 3. Oscillatory term eosc
MA (k, N) in the MA contribution eMA (k, N), equation (13), calculated

for (001) fcc Co(11) film (N = 11) within the spd TB model; T = 300 K. The plot of eosc
MA(k, N)

is shown in a quarter of the BZ and is symmetrical in the other quarters of the BZ.

-6

0

6

-6

0

6

-6

0

6

-6

0

6

-6

0

6

k (π/a2d)

-6

0

6

e M
A

(m
eV

)
os

c

N=8

N=9

N=10

N=11

N=12

N=13

Γ M

0 22/2

Figure 4. Oscillatory MA term eosc
MA(k, N) versus k =

√
k2

y + k2
y along the diagonal �–M of the

BZ calculated in the spd TB model for (001) fcc Co(N ) films (N = 8–13); T = 300 K.

regions: 	� = {k : |ki | � 1
4π/a2d, i = x, y}, 	M = {k : 3

4π/a2d � |ki | � π/a2d, i = x, y}
which gives two different MA oscillatory terms:

Eosc
MA(	�, N) = 1

NBZ

∑
k∈	�

eosc
MA(k, N), (16)
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Figure 5. Oscillatory MA term eosc
MA(k, N) versus k =

√
k2

y + k2
y along the diagonal �–M of the

BZ calculated in the d-only TB model for (001) fcc Co(N ) films (N = 9–13); T = 300 K.

Eosc
MA(	M, N) = 1

NBZ

∑
k∈	M

eosc
MA(k, N). (17)

The sum Eosc
MA(	�, N) + Eosc

MA(	M, N) + Econ
MA reproduces the total MA energy EMA and

its oscillations with good accuracy, especially for N � 8; cf figures 1 and 6. The results
shown in figure 6 prove that, in the case of the d-only model, the 2-AL-period oscillations
Eosc

MA(	�, N) and the 3.5-AL-period oscillations Eosc
MA(	M, N) have similar amplitudes so

that their superposition Eosc
MA(	�, N) + Eosc

MA(	M, N), giving effectively Eosc
MA(N), has a more

complex oscillatory dependence with no clear period. On the other hand, in the spd TB
model the oscillations Eosc

MA(	M, N) coming from the corners of the BZ have much smaller
amplitude than the term Eosc

MA(	�, N) originating in the centre of the BZ so that the 2-AL-period
oscillations Eosc

MA(	�, N) dominate in the sum Eosc
MA(	�, N)+Eosc

MA(	M, N) ≈ Eosc
MA(N). Thus,

an explanation of the qualitatively different MA oscillations patterns found in the spd and d-
only TB models is obtained.

3.3. Quantum-well states and MA oscillation periods

To understand better why such a situation takes place and to explain the oscillation periods,
it is assumed that the MA oscillations come from QW states with energies close to the Fermi
level εF. This assumption, which will be justified a posteriori, follows the results of the
analysis performed in [13] for (001) fcc Pd(p)/Co(N)/Pd(p) slabs that ended up with the
clear conclusion that it is the QW states in the Pd(p) overlayer that are responsible for the
oscillations of the MA energy versus the Pd thickness. QW states in the present (001) fcc
Co(N) film come from the Bloch states in bulk fcc Co that, in the Co slab, are totally reflected
at the boundaries. As a consequence, the z component (i.e. perpendicular to the film surface)
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Figure 6. Oscillatory MA contributions Eosc
MA(	�, N) (line 1) and Eosc

MA(	M, N) (line 2) coming
from the BZ regions 	� and 	M, respectively, calculated for (001) fcc Co(N ) slabs at T = 300 K;
cf equations (16) and (17). Line 3 shows the sum Eosc

MA(	�, N) + Eosc
MA(	M, N) + Econ

MA where the
constant MA term Econ

MA is defined in equation (15). (a) spd TB model, (b) d-only TB model.

of the three-dimensional (3D) wavevector (k, kz) is quantized, which can be described in the
phase accumulation picture [35–37] by the general formula

kz = k(i)
z = i + ϕ

N

2π

a
(18)

where i = 1, . . . , N and ϕ is a phase shift due to scattering at the boundaries; ϕ = ϕmσ (ε)

depends on the bulk band index m, spin σ and also, usually weakly, on the state energy ε.
The QW state energies ε0

nσ (k) corresponding to the mth bulk band εb
mσ (k, kz) can then be

approximated by εb
mσ (k, k(i)

z ). These energies cross the Fermi level εF periodically when the
Co thickness N increases: if the i th QW state crosses εF for N = Ni the next, (i + 1)th, QW
state will cross εF for N = Ni+1 = Ni + L. The corresponding oscillation period is

L = 2π

a
[kz0]−1 (19)

for kz0 � 0.5 2π
a , where kz0 is found from the condition

εb
mσ (k, kz = kz0) = εF. (20)

For kz0 > 0.5 2π
a , we have

L = 2π

a

[
2π

a
− kz0

]−1

(21)
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due to the aliasing effect [37]. In this case, the Fermi level εF is successively crossed for
N = Ñs and N = Ñs+1 = Ñs + L by a QW state with i = Ñs − s and i = Ñs+1 − (s + 1),
respectively; here s = N − i relabels k(i)

z :

kz = k(i)
z =

(
1 − s − ϕ

N

)
2π

a
. (22)

According to the formula (11), QW states |nkσ 〉 corresponding to k(i)
z ≈ kz0 which cross εF

periodically when the film thickness N increases can lead to an oscillatory contribution in the
MA energy EMA. The conditions for this to occur are discussed below.

Since the majority-spin d band in bulk and film Co systems is below the Fermi level εF, we
first examine only minority-spin bands εb

m↓(k, kz) of bulk Co in search of the MA oscillation

periods. The minority-spin bands are plotted for fixed k = � and M as a function of kz in
figures 7(a), (b); these two plots actually correspond to the lines �–X and X–W–X, respectively,
in the 3D BZ. As seen in figure 7(a), for k = �, one of the bulk bands εb

m↓(k, kz), i.e. the doubly
degenerate band �5, crosses εF at kz = kz0 = 0.528 2π

a in the spd TB model while a similar
crossing occurs at kz0 = 0.570 2π

a in the d-only TB model. The two values of kz0 correspond to

the periods L = Lspd
� = 2.12 AL and L = Ld

� = 2.33 AL, respectively. Both periods are close
to 2 AL so that it is legitimate to associate them, and hence also the corresponding QW states,
with the calculated MA oscillation contribution Eosc

MA(	�, N) coming from the vicinity of the
�-point. The fact that the obtained oscillation period L differs from 2 AL results in a phase shift
seen in the dependence of Eosc

MA(	�, N); this shift is especially pronounced in the d-only TB
model where the value L − 2 = Ld

� − 2 = 0.33 AL is larger; cf figure 6. In the spd TB model
where L −2 = Lspd

� −2 = 0.12 AL is small, the dependence Eosc
MA(	�, N) has a characteristic

beat with a long period of Lbeat = 2
0.12 ≈ 17 AL due to discrete thickness sampling; cf figure 6.

This beat, seen even better in figure 2 where the contribution eMA(k = �, N) is shown, explains
why 2-AL-period oscillations Eosc

MA(	�, N) are quenched for 4 � N � 7 in the spd TB model.
For N � 3, the notion of QW states becomes highly questionable so that the present analysis
is not valid.

For the M-point, the bulk bands in the d-only TB model cross the Fermi level at two
symmetrical points: kz = kz0 = 0.301 2π

a , kz = kz0 = 0.699 2π
a ; cf figure 7. They correspond

to the same period of L = Ld
M = 3.32 AL according to the formulae (19) and (21). Including

the sp–d hybridization results in significant changes of the bulk bands in question, i.e. bands
Z3, so that the positions of the crossing points are modified to kz0 = 0.194 2π

a , 0.806 2π
a and

the respective period is L = Lspd
M = 5.15 AL. Similarly, as for the �-point, the exact periods

obtained, Lspd
M and Ld

M, agree very well with the oscillatory dependence of the MA contribution
Eosc

MA(	M, N) presented in figure 6. This again confirms the link between QW states and the
MA oscillations in the (001) fcc Co films.

The values kz0 = 0.528 2π
a , 0.194 2π

a , 0.806 2π
a found in the spd TB model, and kz0 =

0.570 2π
a , 0.301 2π

a , 0.699 2π
a obtained in the d-only TB model are extremal radii of the Fermi

surface in the (001) direction. This stems from the fact that � and M are stationary points at
which the bulk energy bands have extrema as functions of k. Each of the listed values of kz0 is
modified when k moves away from the respective high-symmetry k-point, � or M. However,
the changes of kz0 = kz0(k) are relatively small in some neighbourhood of the high-symmetry
point so that the MA contributions coming from such a region have similar oscillation periods
L = L[kz0(k)] and thus they add up to a sizeable MA term oscillating with a clear period. The
area of the contributing region and, as a consequence, the oscillation amplitude are inversely
proportional to the curvature of the respective bulk band as a function of k, similar to that
found in the case of oscillations of exchange coupling; cf [39–42]; see also discussion below.
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Figure 7. Minority-spin energies εb
m↓(k, kz) in bulk fcc Co versus z component of the 3D

wavevector (k, kz). The energies are calculated for fixed (a) k = � and (b) k = M in the spd (full
curves) and d-only (broken curves) TB models without SO coupling. The state symmetries are
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There are also other extremal radii of the Fermi surface than those listed above. The extra
radii kz0 are found for minority spin at k = � (see figure 7(a)), but also for majority spin
at the well-known ‘belly’ and ‘neck’ stationary points, i.e. at k = � and k = (±0.74 π

a2d
, 0)

(and k = (0,±0.74 π
a2d

)), for Co, respectively. However, all these additional extremal radii,
i.e. all those not marked in figure 7, give apparently weak contributions to MA as no extra
oscillations, with periods other than 2 AL, are seen in Eosc

MA(	�, N) (cf figure 6). We also find
that the k-resolved MA contribution eMA(k) does not oscillate in the vicinity of the ‘neck’
points; see figure 3. The reason for this is rapid variation of the additional kz0(k) around the
corresponding stationary points due to large curvatures of the involved sp bands or, in the case
of kz0 = 0.14 π

a2d
seen in figure 7(a), due to a very small distance of the d bands 1, 2 from the

Fermi level εF for small kz .
The mechanism of how QW states induce the investigated MA oscillations is visualized

in figures 8 and 9 which show the minority-spin energy bands around the �- and M-points for
a few selected film thicknesses. To pick up, from all the energy bands, the energies of the QW
states involved in the MA oscillations coming from a given kz0, we calculate the quantity

g↓
n (k, kz) = 2

N

∑
µ

∣∣∣∣
N∑

l=1

exp(ikzzl)a
↓
nlµ(k)

∣∣∣∣
2

(23)
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for each minority-spin state

|nk ↓〉 =
∑
lµ

a↓
nlµ(k)|klµ ↓〉 (24)

and demand that

g↓
n (k, kz) � w (25)

for some kz ∈ [kz0 −�kz, kz0 +�kz]. Here, zl = la/2 is the z coordinate of the lth atomic plane
and each basis state |klµ↓〉 is a two-dimensional Bloch state formed from atomic orbitals µ

on all sites j in AL l; cf [9, 11, 13]. Since the eigenstates |nk↓〉 are either z-odd or z-even as
far as the mirror symmetry with respect to the middle film plane z = zmid is concerned, the
space variation of a QW state |nk↓〉 derived from a bulk state

|mkk(i)
z ↓〉 =

∑
µ

b↓
mµ(k, k(i)

z )|kk(i)
z µ↓〉 (26)

(here |kk(i)
z µ↓〉 are 3D basis Bloch states) is given approximately by either

a↓
nlµ(k) =

√
2

N
b↓

mµ(k, k(i)
z ) cos k(i)

z (zl − zmid) (27)

or

a↓
nlµ(k) =

√
2

N
b↓

mµ(k, k(i)
z ) sin k(i)

z (zl − zmid) (28)

depending on the parities (z-even or z-odd) of the state |nk↓〉 and orbital µ. The relations (27)
and (28) hold well in the interior of the film while they become modified near the surfaces.
Thus, for a thick film, the quantity g↓

n (k, kz) calculated for such a QW state |nk↓〉 is close to 1
when kz ≈ k(i)

z ; it is somewhat smaller for thinner films. On the other hand, g↓
n (k, kz) is close

to 0 when kz differs significantly from k(i)
z . Thus, the condition (25) selects the QW states with

k(i)
z ≈ kz0. The threshold value is taken to be w = 0.5 for the vicinity of the �-point, shown

in figure 8, since deviations from the relations (27) and (28) for QW states |nk↓〉 with a short
period close to 2 AL lead easily to a significant decrease of g↓

n (k, kz). A larger, more selective,
value of w = 0.7 can be used around the M-point where the interesting QW states have longer
periods. Checking the condition (25) for kz from the interval [kz0 −�kz, kz0 + �kz], instead of
at one point kz = kz0 only, allows for identification of QW states from a larger neighbourhood
of the Fermi level εF; for this purpose the value �kz = 0.05 2π

a is chosen.
As seen in figure 8, the QW states around the �-point identified by using the condition (25)

with kz0 = 0.528 2π
a (corresponding to L = 2.12 AL), in the spd TB model, come in pairs

which are degenerate at k = �, similar to the bulk band �5 in figure 7 from which these QW
states originate. This resembles the situation found previously [12, 13] for Pd(p)/Co(N)/Pd(p)
systems where similar pairs of QW states present in the Pd overlayer near the top of the d-band
were proved to cause MA oscillations versus the Pd thickness p. In fact, it is the same branch
of the bulk d-band, i.e. band �5, though in different energy regimes that is involved in both
cases. According to the formula (11), two states |nk↓〉, |n′k↓〉 forming one of the described
pairs contribute significantly to MA when their energies are close to each other and they lie
on two sides of the Fermi level εF or within a few kT from it; cf [13]. This situation takes
place when the pair energies are close to εF at k = � where they are degenerate. In the spd
TB model, such favorable alignment of the QW state pairs is found, in particular, for N = 11,
but not for N = 12, as seen in figure 8, and also for other odd film thicknesses N in the
range 8 � N � 24, but not for even values of N . Thus, we obtain a correlation between the
positions of the QW state pairs and the dependence on N of the MA contribution Eosc

MA(	�, N)
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Figure 8. Minority-spin energies ε0
n↓(k) in the (001) fcc Co(N ) film plotted in the vicinity of the

�-point versus k =
√

k2
y + k2

y along the lines �–X (plots (a), (c)) and �–M (plots (b), (d)). The

energies are calculated for N = 11 (plots (a), (b)), N = 12 (plot (c)) in the spd TB model, and for
N = 12 in the d-only TB model (plot (d)), without SO coupling. The bulletted lines (•) denote
energies of those states |nk↓〉 for which there exists kz ∈ [0.528 2π

a − �kz , 0.528 2π
a + �kz] in

the spd model, or kz ∈ [0.57 2π
a − �kz , 0.57 2π

a + �kz] in the d-only model, such that g↓
n (k, kz),

equation (23), is larger than w = 0.5; �kz = 0.05 2π
a . These QW states are marked with indices

s, s ± 1 where s = N − i relabels k(i)
z , cf equation (22); the value of s is the same in plots (a)–(c)

but can be different in plot (d). The horizontal broken line denotes εF = 0.

oscillating with the period close to 2 AL; cf figure 6. This scenario is supported by the fact
that states |nk↓〉, |n′k↓〉 belonging to different pairs derived from band �5 give a very small
contribution to MA, even if their energies are favourably placed. This happens because the
formula (11) contains expressions like

N∑
l=1

[a↓
nlµ]∗a↓

n′lν (29)

(cf [12, 13]) which are close to 0 when the two QW states |nk↓〉, |n′k↓〉 are both given by
equations (27) and (28) and the corresponding values of k(i)

z and k(i ′)
z are different (i.e. i �= i ′

while the respective phase shifts ϕ, ϕ′ are very similar). It can also be checked numerically
that the MA contribution coming solely from the pair states present in the vicinity of the Fermi
level εF, namely closer than 0.4 eV from εF, accounts for around 90% of the 2-AL-period MA
oscillations Eosc

MA(	�, N).
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Figure 9. Minority-spin energies ε0
n↓(k) in the (001) fcc Co(N ) film in the vicinity of the

M-point plotted versus k =
√

k2
y + k2

y along the diagonal �–M of the BZ. The energies are

calculated for N = 13 in the (a) spd TB and (b) d-only TB models, without SO coupling. The
bulletted lines (•) denote energies of those states |nk↓〉 for which g↓

n (k, kz), equation (23), is
larger than w = 0.7 for some kz ∈ [0.194 2π

a − �kz , 0.194 2π
a + �kz] in plot (a), and for some

kz ∈ [0.301 2π
a − �kz , 0.301 2π

a + �kz] in plot (b); �kz = 0.05 2π
a . These QW states are also

marked with indices i , i + 1 where i labels k(i)
z , equation (18). Similarly, the lines with open

circles (◦) correspond to QW states with kz ∈ [0.806 2π
a − �kz , 0.806 2π

a + �kz] in plot (a) and

kz ∈ [0.699 2π
a − �kz , 0.699 2π

a + �kz] in plot (b), and they are marked with the respective indices
s ′ = N − i ′, s ′ + 1; cf equation (22). The values of i and s ′ in plot (b) are different, in general,
from those in plot (a). The horizontal broken line denotes εF = 0.

In the case of the oscillations Eosc
MA(	M, N) arising in the neighbourhood of the M-point,

one of the QW states |nk↓〉, |n′k↓〉 contributing in the formula (11) comes from the minority-
spin non-degenerate bulk band Z3 and corresponds to k(i)

z close to one of the determined
extremal radii, i.e. kz0 = 0.194 2π

a or 0.806 2π
a in the spd TB model, while the second state

can originate from other bulk bands and its energy is not limited to the immediate vicinity
of εF. It should be noted here that an eventual contribution from the QW states |nk↓〉 with
k(i)

z ≈ 0.194 2π
a coupled to the QW states |n′k↓〉 corresponding to k(i ′)

z ≈ 0.806 2π
a is not

significant despite the energies of such states, both originating from bulk band Z3, being very
close to each other near εF; cf figure 9; a similar conclusion is also valid in the d-only TB
model. This happens because the formula (11) for EMA is built of expressions similar to (29)
(cf [9, 11, 13]) which become small when k(i)

z and k(i ′)
z lie far from each other.

By comparing figures 4 and 5 with 8, 9, one notes that the shape of the k-resolved MA
oscillatory contribution eosc

MA(k, N) near the �- and M-points is correlated with the position of
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the QW bands corresponding to the respective extremal radii. In particular, the effective region
contributing to MA oscillations around the M-point is determined roughly by the maximal
value κm of the nearest distance, from the M-point, at which the QW bands lying above the
Fermi level εF cross εF; see figure 9. The area of this region grows as κ2

m, which explains
why, as mentioned above, it is inversely proportional to the curvature of the QW bands (or
the bulk band they originate from) which are described by a quadratic function of k near the
M-point. This argument elucidates why the oscillatory contribution Eosc

MA(	M, N) coming
from the neighbourhood of the M-point is a few times smaller in the spd TB model than in the
d-only model (cf figure 6) which, as shown before, implies different behaviour of the total MA
energy EMA(N) in the two TB models. Indeed, as seen in figure 9, the interesting QW bands
are much more bent downwards near the M-point when the spd hybridization is present.

Having established the origin of the MA oscillations, one can easily explain why they
decay with increasing Co film thickness N ; see figures 1 and 6. Indeed, when the film becomes
thicker the energies of the QW state pairs existing near the �-point become closer to each other
so that more than one pair can contribute to the MA for a given thickness N . Consequently,
the amplitude of the MA oscillations, arising as the QW energies pass through the Fermi level
εF with changing N becomes smaller. Introduction of a finite temperature works in a similar
way by smoothing the step of the Fermi–Dirac function f (ε).

While MA oscillation periods are determined by the extremal radii of bulk Fermi surface,
the phases of the MA oscillations depend on the precise positions of the energies of the
corresponding QW states with respect to the Fermi level εF as already noted above when
figures 6 and 8 were compared. These positions depend, in particular, on the phase shift ϕ

present in the quantization formula (18) which defines values of k(i)
z . Since ϕ is modified when

the Co surfaces of Co(N) film are replaced with Co/Cu, or similar, interfaces, as assumed
in [16], the phase of the 2-AL-period MA oscillations can change appropriately, which can
explain the 1-AL phase shift between the present MA results and the ones reported in [16].
Another reason for this effect could be a small difference between bulk magnetic moments
found in the two calculations in question which results in slightly different positions of the
Fermi levels εF.

4. Concluding remarks

The reported calculations show that the TB approach yields the MA energy of a (001) fcc Co(N)
film that oscillates versus the film thickness N with a clear period, close to 2 AL, once the
sp–d hybridization is included. This result agrees very well with the oscillatory N dependence
of the MA energy found by Szunyogh et al [16] for Co/Cu systems including a Co(N) layer.
In the present paper it is proved that the 2-AL-period MA oscillations come from the pairs of
minority-spin QW states occurring near the Fermi level around the �-point in the surface BZ.
It is also shown that there is a second MA oscillatory contribution, with a larger period, coming
from QW states in the neighbourhood of the M-point, but this contribution is dominated by the
2-AL-period MA term when the sp–d hybridization is present. The exact periods of these two
MA oscillatory contributions are determined by the extremal radii, in the (001) direction, of
the minority-spin bulk Fermi surface at the �- and M-points. Thus, high-symmetry k-points
are shown to play an important role in the phenomenon of MA oscillations.

The extremal radius kz0 = 0.528 2π
a found at the �-point, in the spd TB model, gives the

dominant period of 2.12 AL and it matches very well the position q0 = 0.5 (leading to the
MA period of q−1

0 = 2 AL) of the main maximum of the discrete Fourier transform F(q)

obtained in [16] from the MA energy as a function of the Co layer thickness N . The two other
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extremal radii kz0 = 0.194 2π
a and 0.806 2π

a , which correspond to the M-point MA contribution
with period of 5.15 AL, coincide almost exactly with the positions q = 0.2 and 0.8 of the side
maxima where F(q) is around four times smaller than at the main maximum q0 = 0.5. This
proves that these additional maxima, though they were not discussed in [16], are not artefacts but
represent an extra small oscillatory MA term. Thus, it can be concluded that the TB approach
including spd hybridization can predict MA oscillation patterns with an accuracy close to that
of ab initio calculations. This stems from the fact that the oscillation periods are determined
on the basis of the bulk Fermi surface found by using TB parameters which were obtained
in [23] by fitting ab initio bulk bands. An advantage of using the parametrical TB model is
that, due to its high numerical efficiency, one can diagonalize the full film Hamiltonian and,
consequently, through appropriate analysis of MA energy, one can identify individual quantum
states responsible for the MA oscillations. This goal is hard to achieve within the ab initio
approach since successful ab initio calculations of MA energies for sufficiently thick films
are based on a Green function formalism, like the screened Korringa–Kohn–Rostoker (KKR)
method used in [14–16].

The present TB calculations also show that the MA energies found with the aid of the force
theorem (used, e.g., in [7, 8, 14–16, 19]) coincide almost exactly with the results obtained within
the second-order perturbation theory TB approach developed in this author’s previous work
on MA [9–13]. This conclusion implies that an eventual MA contribution due to degeneracies
of quantum states at the Fermi level, discussed in [18], is negligible for (001) fcc Co films.

Experimentally, the oscillations of the MA energy with the thickness of the (001) fcc Co
layer have been reported only by Krams et al [4] who found the onset of 2 AL MA oscillations
decaying very quickly with N . As already mentioned, the lack of MA oscillations in most
experiments can be attributed to the surface quality. Indeed, one can expect that the investigated
MA oscillations in Co films are greatly diminished when their period of 2 AL is shorter than
the vertical amplitude of the surface roughness profile. Another reason can be due to the fact
that the responsible QW states correspond to small in-plane wavevectors k, which implies that
the surface has to be flat over relatively large areas if these QW states are to propagate well.
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